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LETTER TO THE EDITOR 

Treatment of the 3~ Ising gauge model by a Monte Carlo 
renormalisation group method 

Stephan Wansleben 
Institut fur Theoretische Physik, Universitat zu Koln, Ziilpicher Strasse 77 ,  5000 Koln 41, 
West Germany 

Received 2 January 1985 

Abstract. The king gauge model on a simple cubic lattice with finite extension in one 
direction is treated by Binder’s Monte Carlo renormalisation group method. p /  U is found 
to increase with increasing number of layers to values larger than $. 

In the early seventies the Ising gauge model was introduced by Wegner (1971) in his 
work on duality relations between general Ising models. The three-dimensional Ising 
gauge model on a simple cubic lattice is dual to the three-dimensional ordinary Ising 
model (Balian et a1 1975). Its Hamiltonian is 

The variables are placed on the links between the lattice points, up means the product 
around an elementary plaquette, i.e. around the smallest connected loop of four links 

Since the Ising gauge model is one of the simplest models of lattice gauge theory 
(Wilson 1974), most progress in the investigation of its statistical properties has been 
made within the framework of theoretical high energy physics. In this letter I want 
to present some new results from the point of view of statistical physics. The conclusions 
for high energy physics will be published elsewhere. 

Due to the local gauge symmetry of the king gauge model (flipping all spins placed 
on links joined to one lattice point does not change the interaction energy) it avoids, 
at a first glance, the usual methods of statistical physics developed for models with 
global symmetries. In particular, since the local gauge symmetry cannot be spon- 
taneously broken (Elitzur 1975) there does not exist a local order parameter correspond- 
ing to this symmetry. Instead, the two phases are usually characterised by the differences 
in the long-range behaviour of a gauge invariant correlation function, the so-called 
Wilson loop (see Kogut 1979). 

However, if the lattice is finite in one direction (say the vertical direction) and the 
boundary conditions in this direction are periodic, it is possible to define an order 
parameter which indicates the spontaneous breaking of a global Z(2) symmetry 
analogous to the magnetisation in models of solid state physics (Kuti et a1 1981, 
McLerran and Svetitsky 1981, Weinkauf and Zittartz 1982). The transformation accord- 
ing to this symmetry, the so-called centre symmetry (Susskind 1978, Polyakov 1978), 
is performed by flipping the spins placed on all vertical links between a single pair of 

( up = uuuu, u = * 1). 
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adjacent horizontal layers. The order parameter, the Polyakov loop correlation func- 
tion, is defined as 

( L )  = lim h - 0  N s - w  lim (5 .> (2) 

where the aj belong to vertical links which form a loop r closed due to the periodic 
boundary conditions. Ns and NT define an N s  x Ns x NT lattice and h denotes an 
external field coupled to the Polyakov loops through an energy 

-hL=-h  n U) (3) 
j e r  

Recently many papers have been published concerning the behaviour of ( L )  close to 
the transition point in the Ising gauge model (and other lattice gauge models where 
L is defined similarly). The latest of these papers deal with a conjecture made by 
Svetitsky and Yaffe (1982) for a whole class of lattice gauge models. It says that the 
effective interaction between Polyakov loops, which is obtained when all degrees of 
freedom except the Polyakov loops are integrated out, is short ranged. For the Ising 
gauge model, Svetitsky and Yaffe concluded that due to the global Z(2) symmetry the 
resulting two-dimensional effective theory for Polyakov loops should belong to the 
universality class of the two-dimensional Ising model. In particular, the critical 
exponents should be 

8, U =  1 .  

The validity of this conjecture has been examined by mean-field calculations (Gross 
and Wheater 1984a, Matsuoka 1984, Alessandrini and Boucaud 1984, Green and Karsch 
1984), strong coupling expansions (Polonyi and Szlachanyi 1982, Gross 1983), and 
various Monte Carlo calculations (Celik et a1 1983, Gavai and Karsch 1983, Gavai 
and Satz 1985, Gross and Wheater 1984b, Curci and Tripiccione 1984, Wansleben 
1984). Most of these publications support the conjecture whereas some Monte Carlo 
results are not consistent with it (Wansleben 1984, Gross and Wheater 1984b). In the 
(2+ 1)-dimensional Ising gauge model with N T =  4, p was found to be 0.20*0.04 
(Wansleben 1984). U = 1 is known from the duality to the three-dimensional Ising 
model which holds exactly in the case of finite extension in one direction with periodic 
boundary conditions. 

The common difficulty of all Monte Carlo calculations in this field which have 
come to my knowledge up to now is that a fit of the data to 

(4) 

(Wegner 1972) requires the determination of all five parameters (the critical temperature 
is unknown). If the correction term is ignored, systematic errors in the resulting leading 
exponent /3 are expected. Therefore, a reliable error estimate is difficult, even when 
a finite-size scaling analysis is performed which gives a check whether a chosen set of 
parameters is consistent with finite-size scaling theory (Wansleben 1984). 

One way to avoid this basic difficulty is the use of Monte Carlo renormalisation 
group (MCRG) methods which yield the critical temperature independently of the 
determination of critical exponents. The basic idea of most of these methods, the 
blocking of spins into block spins, can be applied only in those directions where the 
lattice is infinite. This means that a MCRG procedure for the effective theory of Polyakov 
loops must be carried out. Since the Hamiltonian of this theory is unknown so far 

( L )  = B,( T -  T J @ [  I + B,( T -  TJ"+ . . .] 
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(and will contain many different types of interactions) the widespread method of 
Swendsen (Swendsen 1982, Pawley et a1 1984) is not suitable for this problem. An 
alternative method is that of Binder (1981). It is based on the treatment of the block 
spins defined as 

s=(1/12)  c L, 
j e  cell 

i.e. the average over a cell of length 1. The critical temperature is determined by the 
non-trivial fixed point of the fourth cumulant of the block-spin distribution function, 

U, = 1 -(s4),/3(s2)?, 

regarded as a function of 1 (figure 1). ( ), means the expectation value for block spins 
of size 1. From a finite-size scaling ansatz for the block-spin distribution function one 
finds (Binder 1981) 

( 5 )  

( 6 )  

2 p / u =  w, 

WP = - ( l / ln  b )  ln((s2)d(s2) , )  

with 

at the non-trivial fixed point of U,. 

728 I 1 2 8 x 8  la t t i ce  
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Figure 1. Flow of U, as a function of I for NT= 8. tanh(u), with U =(interaction 
energy)/k,T, corresponding to the different trajectories is given by the numbers on the 
right-hand side within the frame. The trivial fixed points are U, = 0 and U, = $. 

Unfortunately, equation (5) holds only if corrections to scaling are neglected; 
however, they seem to be very important here. Binder found that the correction to 
scaling term which must be supplemented at the left-hand side of equation (5) 
asymptotically (b-tinfinity) goes like (In b)-' for 1 fixed (figure 2 ) .  A systematic 
extrapolation to infinite I at fixed b (Kalle 1984) was not carried out by Binder and 
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Figure2. Extrapolation of W, to infinite b for NT=8 at tanh(a)  =0.6360. The scale of 
the abscissa is the inverse logarithm of b. 

seem to be impossible with my data. Thus my results may contain some systematic 
error which will be discussed later. Analogous considerations lead to a (In b)-' 
dependence of the critical temperatures determined by the condition U, = U,, (figure 3). 

A,=O 6 3 6 1  i 00003 

Figure 3. Extrapolation of the effective critical constants determined by the matching 
condition U,, = U, for NT = 8. A = tanh( a ) .  The scale of the abscissa is the inverse logarithm 
of b. 

I simulated an Ns x Ns x NT lattice with Ns = 128 and NT = 2,4 ,8 .  I used a fully 
vectorised multispin coding algorithm (Wansleben er a1 1984) on a two-pipe CDC 
Cyber 205 including a shift-register random number generator (Kalle and  Wansleben 
1984). The speed is about 15 million updates per second for NT = 8. 

The number of iterations at  given temperature was 460 000 for NT = 2 , 4  and 350 000 
for NT= 8. In addition for every NT at least two runs with 1.5 million Monte Carlo 
steps per spins were carried out with temperatures close to the critical ones. W, was 
determined for several temperatures around the critical point and extrapolated to 
infinite b as shown in figure 2. These values are plotted against the temperature in 
figure 4 for NT=8. The effective critical temperatures determined by the matching 
condition U,, = U, were extrapolated to infinite b as shown in figure 3. The final result 
for P / v  can be read from figure 4 (for NT= 8). It is the value of W(c0)/2 at the critical 
temperature ( P / v = O . l 9 i 0 . 0 3  for NT=8). 

The results are summarised in table 1 .  The given error bars are standard deviations 
arising from statistical errors. These values may have some systematic error in addition. 
First, the vaues for W, extrapolated to infinite b at a given temperature (figure 2) 
might be underestimated because a systematic dependence on 1 may not have fully 
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Figure 4. WO extrapolated to infinite b plotted against A = tanh(a)  for NT = 8. The critical 
temperature is given by A = 0.6361 iO.0003. 

Table 1. Final results for various numbers of layers NT. v = 1 is known from duality 
arguments. 

NT PI 

2 0.15 *00.03 
4 0.16i0.03 
8 0.19 i 0.03 

cancelled out when I used this method of extrapolation (note that the values of W, 
at fixed b for 1 > 2 increase with increasing I). Second, the critical temperatures may 
be overestimated due to the finite length of the whole lattice. Taking into account 
these two points and the behaviour of W, as a function of the temperature (figure 4), 
I conclude that my estimates for p / v  may be too low due to higher-order corrections 
to scaling. Thus, the MCRG treatment as presented here with p near 0.17 is consistent 
with the results of standard Monte Carlo simulation where p = 0.20*0.04 for NT=4 
was found (Wansleben 1984). Moreover, it suggests a slight increase of p / v  with 
increasing N T .  The question remains open, however, whether a limit of NT to infinity 
is a reasonable limit for p. 

I thank J Zittartz, D Stauffer, and H Satz for helpful discussions and P von Brentano 
for support of this work by providing the DATEX P connection to the C D C  Cyber 205 
at Bochum University, West Germany. 
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